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Excitable Structures in Stochastic Bistable Media
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We examine the influence of parametric noise on the spatiotemporal behavior of
a bistable medium with activator�inhibitor dynamics. Deterministic front
propagation in one dimension is seen to be destabilized by the external noise,
resulting in the propagation of solitary pulses through the system. For large
enough noise levels, this state becomes unstable via a backfiring mechanism,
which eventually leads to a turbulent state.

KEY WORDS: Reaction diffusion system; noise-induced phenomena; activator�
inhibitor dynamics; pulse propagation.

Noise has a relevant influence on the dynamics of bistable systems, due to
the arousal of interwell transitions that would not exist in purely deter-
ministic conditions. Particularly important, realizations of such an influence
occur in systems to which a small-amplitude external signal is applied. In that
case, signal amplification can be obtained for an optimal amount of noise,
giving rise to phenomena such as stochastic resonance, (1�4) noise-enhanced
transmission of information(5) and noise-enhanced phase coherence.(6)

When spatially extended media are considered, the interplay between
local spatial coupling and noise effects leads to further interesting phenom-
ena.(7) In particular, external noise has been seen to substantially affect
front, spiral and wave propagation in autonomous systems, (8�11) to sustain
spatiotemporal structures in excitable media(12�14) which might explain
noise enhanced propagation of structures in neuroscience, (15) to enhance
signal propagation in bistable systems, (16�18) to favor the decay of meta-
stable states in periodically driven systems(19) and to induce domain
growth in conserved-order-parameter systems.(20, 21)
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In the case of bistable systems, however, most of the spatiotemporal
phenomena analysed so far are linked to a very simple scenario, namely the
propagation of a front, or trigger wave, (22, 23) connecting the two stable
stales of the system. In the present paper, we argue that in a bistable
medium with activator-inhibitor dynamics, spatiotemporal parametric
noise is able to support non-trivial dynamical structures arising from
simple local perturbations of a homogenous state, such as running solitary
pulses and turbulent-like states driven by backfiring processes. Traveling
pulses are frequently observed in chemical systems, (22) and are considered
to be the mechanism of signal propagation in neural systems, (24) but so far
they have been usually studied only in the framework of excitable media.
Here we show that this behavior can also arise in bistable media in a
natural way, as long as noise sources (ubiquitous for instance in neural
tissue) exist in the system.

We consider an activator-inhibitor model defined in a one-dimensional
space. In dimensionless units the model reads (25)
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where u(x, t) and v(x, t) are the concentrations of the activator and the
inhibitor, respectively. Only the activator is allowed to diffuse through the
medium. The two species have well-separated time scales, in such a way
that the dynamics of the activator is much faster than that of the inhibitor.
This is taken into account by the parameter =, which represents the ratio
of decay times of the two species (=={u �{v), and that will be considered to
be much smaller than unity. Parameters a, b, and # are chosen in such a
way that the system is in a bistable regime. The inhibitor-production coef-
ficient is assumed to fluctuate around a mean value #, as represented by the
spatiotemporal white noise '(x, t), which has zero mean and correlation
defined by

('(x, t) '(x$, t)) =2_2$(t&t$) $(x&x$) (2)

The local dynamics of the system in the absence of noise can be easily
described in the phase plane (u, v). Figure 1 shows the nullclines u* =0 and
v* =0 in that plane. Crossings of these nullclines correspond to fixed points
of the model. For the parameters chosen here, the system displays two
stable fixed points (labeled 0 and 1 in the figure) and an unstable one
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Fig. 1. Nullclines of model (1) in the absence of noise, for a=0.85, b=0.1, and #=0.7. Solid
circles denote stable points, and the empty circle indicates an unstable fixed point.

(denoted by an empty circle). Transitions between the two stable fixed
points can be induced by an intense enough perturbation (as in simpler
one-variable double-well systems).

In a bistable extended medium resting in an homogeneous steady state
(0 or 1 in Fig. 1), an initial local perturbation of sufficient intensity is able
to induce a local transition towards the other stable steady state, and
spatial coupling triggers similar transitions in the neighborhood. This gives
rise to a propagating front, as shown in Fig. 2a. In that plot the space-time
evolution of model (1) is represented in the absence of noise. The system
is initially in state 0 (coded in white in the figure), and a perturbation is
applied to the leftmost site. Under these conditions, a transition towards
state 1 (coded in black in the figure) is seen to propagate through the
system with a fixed velocity. Simulations are performed in a discrete chain
of N=400 sites with spacing 2x=0.25 and absorbing boundary condi-
tions. The activator equation is integrated with a semi-implicit algorithm
proposed by Barkley, (26) and the inhibitor equation by means of an explicit
Euler method.

We are now interested in analyzing the effect of the parametric noise
defined by (2) on the previous simple behavior. We first note that the effect
of such a noise on the local dynamics described in Fig. 1 is to introduce
fluctuations in the slope of the v-nullcline. In this way, the system might
undergo local transitions to the excitable regime, which occurs for large
enough values of the slope, for which state 1 collides with the unstable
fixed point and becomes unstable itself. It is to be expected that such tran-
sitions lead to the destabilization of the front solution and, as we will see
in what follows, this is indeed the case.
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Fig. 2. Spatiotemporal evolution of model (1). The profile of the activator u is plotted
(horizontally) at increasing times (vertically). Black coding corresponds to u=1, and white to
u=0. Parameters used are those of Fig. 1, plus ==0.01. Noise intensity is: (a) _2=0.0;
(b) _2=0.0015.

The result of adding a small amount of parametric noise to the system
is shown in Fig. 2b. In this case periodic boundary conditions are used, and
as a result a single solitary pulse propagating indefinitely towards the right
is obtained.(27) While destabilization of the front solution by noise should
not be surprising (fluctuations push locally the system away from state 1),
the way in which the medium self-organizes to generate a stable traveling
pulse is certainly remarkable. In order to understand why this occurs, we
plot in Fig. 3 the superimposed instantaneous profiles of both the activator
and inhibitor variables for one of these pulses at a given time instant.

As revealed by Fig. 3, the evolution of the activator is virtually free
from fluctuations, and displays only jumps between the two fixed points
of the local dynamics. These jumps, rather abrupt due to the small value
of =, delimit the boundaries of the traveling pulse. The mechanisms that
originate the front and the rear of the pulse are very different. On one
hand, the front of the pulse corresponds to the propagation of state 1
(``excited'' state, using the terminology of excitable media) into a noise free
region in state 0 (``rest'' state), and therefore it is basically a deterministic
process. The rear jump, on the other hand, corresponds to the propagation
of the rest region into a fluctuating excited region. This propagation is
initiated by noise, and the corresponding front adjusts its speed to that of
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Fig. 3. Spatial profiles of the activator (solid line) and the inhibitor (dashed line) for a
traveling pulse. Parameters are those of Fig. 1, plus ==0.01 and _2=2_10&4.

the first one, similarly to what occurs in excitable media.(23) Therefore, the
speed of the noise-initiated pulse is the same as that of the deterministic
front. This fact can be observed by bare-eye inspection of Fig. 2, and has
also been systematically checked in our simulations.

Even though the running pulses shown in Fig. 2b have been observed
to be stable for long times (up to 5000 tune units), their width experiences
fluctuations die to the external noise. We have computed the relative dis-
persion of the pulse width, defined as 2#- ( (w&(w) )2)�(w) , where w
is the pulse width at half maximum, and the averages have been performed
over both time evolution and ensemble realizations. The results are shown
in Fig. 4a for increasing noise intensity _2 and two values of the relaxation
time ratio =. The Figure also shows (plot (b)) the corresponding number
of pulses living in the system at a given time instant, averaged again over
time and ensemble realizations. It can be observed (Fig. 4a) that for a
rather broad range of small enough noise levels, the pulse-width dispersion
remains below 150, independently of the parameter =. This behavior
roughly corresponds (see Fig. 4b) to the situation in which a single pulse
travels through the system. This is the case shown in Fig. 2a.

For larger noise intensities, some realizations exhibit behaviors in
which more than one pulse exists at a given time, resulting in an average
number of pulses greater than one. Before examining what is the spatiotem-
poral dynamics in this case, and addressing the issue of its origin, it is
instructive to look at the behavior of the absolute width of the pulses for
increasing noise levels. This information is plotted in Fig. 5 for the same
range of noise intensities as in Fig. 4. It is clear that, as long as the number
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Fig. 4. Relative dispersion of the pulse width (a) and average number of pulses in the system
(b) for increasing noise intensity and two different values of the relaxation-time ration =.
Parameters are those of Fig. 1.

of pulses in the system is strictly kept equal to unity, the pulse width
increases monotonically with noise intensity. We can understand this
behavior by taking into account that a large noise intensity implies large
inhibitor fluctuations in the excited (i.e., ur1) region. We recall that the
front of the pulse is deterministically driven, and only its tail depends on
the existence of fluctuations. This tail corresponds to a front propagating

Fig. 5. Pulse width at half maximum for increasing noise intensity. Parameters are those of
Fig. 4.
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from a resting (i.e., ur0) towards a excited region. This propagation, will
be hindered by the existence of large local concentrations of inhibitor in the
excited region, such as those produced by intense noise in our model.
Therefore, it is to be expected that the larger the noise level, the wider the
pulses, as it is certainly observed.

The monotonic increase in the pulse width with noise intensity breaks
down for sufficiently large noise levels. At this point, the fluctuations are
intense enough to induce a transition from the excited to the rest state in
the middle of the wide pulse, breaking it in two halves. One half continues
to move towards the right at the deterministically prescribed speed,
whereas the other half starts to move in the opposite direction, with the
same absolute velocity. This phenomenon, known as backfiring, is shown
in the spatiotemporal plot of Fig. 6a. This regime corresponds to a substan-
tial increase of the pulse-width dispersion 2 (Fig. 4a) and a decrease of the
absolute pulse width with increasing noise (Fig. 5). The reason for such a
decrease is that now the backfiring mechanism dominates the whole
dynamics of the system, breaking the pulse in two before its tail can adjust
its propagation velocity to that of the pulse front, as explained earlier in
the framework of the single�pulse regime.

The frequency of the backfiring events becomes larger with increasing
noise intensity, eventually leading to a state of spatiotemporal turbulence
such as the one shown in Fig. 6b. In this figure, we have applied absorbing

Fig. 6. Spatiotemporal evolution of model (1) for large noise intensities. Parameters are
those of Fig. 2. Noise intensities are: (a) _2=0.005; (b) _2=0.02.
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boundary conditions in order to prevent circulating pulses from reducing
the complexity of the dynamics through annihilations with other pulses.
We should emphasize at this point that backfiring and the associated tur-
bulent behavior reported here are not observed in the deterministic version
of simple activator inhibitor models such as the one examined in this paper.
In the absence of fluctuations, backfiring requires non-standard dynamics
of the inhibitor variable, that, lead to more that one fixed point in the
excitable regime.(28, 29)

In conclusion, we have observed that spatiotemporal external noise is
able to support excitable-like structures in a bistable medium with simple
activator�inhibitor dynamics. For the considered values of the parameter
(= B 0.01 � 0.02) the dynamics is approximately that of a simple threshold
and time scales of the activator and inhibitor are widely separated. Then
front propagation is destabilized by noise, and the system self organizes in
such a way that stable pulse propagation appears. The pulses are seen to
have a very well defined width, with a dispersion no larger that 150. The
width of the pulses increases with noise intensity. For larger levels of noise,
the pulses become unstable themselves through backfiring processes that
split them in half. This backfiring leads, for intense enough noise, to tur-
bulent behavior.
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